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Abstract. We present some aspects of the rheology of field-responsive suspensions, a class of
field-responsive liquid-matter systems possessing the ability to undergo significant changes in
their strength upon application of an external field. Both the single-particle and the many-particle
domains are discussed. In the former, consideration of the full non-linear dynamics of the particles
leads to an anomalous behaviour of the viscosity whereas in the latter the most salient feature is the
formation of chains and fractal structures. We indicate how to deal with the rheology at moderate
concentrations, leaving open the problem at higher concentrations for which the complexity of the
emergent structures strongly limits the knowledge of their dynamics.

1. Introduction

The term ‘field-responsive liquid matter’ embraces a class of soft-condensed-matter systems
which exhibit peculiar behaviour upon application of an external field. Of particular interest
is the family of two-phase systems in which one of the phases is responsive whereas the other
is practically unresponsive to the effect of the field. The active phase consists of single dipolar
particles which at low concentrations remain randomly dispersed in the liquid phase but at
larger concentrations have a tendency to aggregate forming chains or more complex branched
structures. These structures are embedded in the liquid phase which may be a simple liquid, a
polymer, or a liquid crystal, to name just a few possibilities.

As occurs in dispersions of neutral colloidal particles or polymer solutions, the objects
of the suspended phase interact with their fluid surroundings, thus modifying the flow of this
fluid. Unlike the case for those systems, the interactions of the particles with the fluid are
assisted by the external field; moreover, for a given concentration, structures which for neutral
particles would be stable may evolve over time giving rise to interesting collective phenomena.
The consequence of these features is that some static and dynamic properties of the system
such as the overall magnetization or the viscosity may vary substantially as a consequence of
the external field or the dipolar interactions among particles. This fact constitutes one of the
most important characteristics of these systems, which has been used in many technological
applications. Electro- and magneto-rheological fluids [1] and ferrofluids [1–5] belong to that
class of systems whose static and dynamic properties have been subjects of great interest in
recent years.

Our purpose in this paper is to present several relevant aspects of the rheology of field-
responsive suspensions. We will discuss the single-particle and the many-particle regimes.
For dilute suspensions, the case of constant field has been extensively studied and shows
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a monotonic increase of the viscosity when the field increases. For time-dependent fields
this behaviour breaks down and even in the linear domain the viscosity may decrease upon
increasing the field. This phenomenon leading to a diminution of the total viscosity of
the suspension has been found recently and has been referred to as the negative-viscosity
effect [6–8]. Interesting non-linear effects may arise from the coupling of the dynamics of
the magnetic moment, described by the Landau–Gilbert equation, to that for the orientation
of the particle. The dynamics in this regime exhibits a rich phenomenology whose main
macroscopic implication is the breaking of the monotonic behaviour of the viscosity [9]. The
main feature in the moderately concentrated regime is the formation of chains and branched
structures. Chains appear at low temperatures, for which Brownian effects are irrelevant, or for
strong dipolar interaction, which occurs when the particles are induced dipoles (electro- and
magneto-rheological fluids). They are also formed in one-dimensional adsorption processes in
the presence of dipolar interactions [10]. In the opposite limit, including the case of nanosized
ferromagnetic particles or ferrofluids, more compact aggregates may be found.

Kinetic models have been proposed to analyse the dynamics of chains of induced dipoles
and its implications for the rheological behaviour. The structures emerging at high temperatures
are sometimes hierarchical. The rheology in this regime is more complex and the modelling
of the dynamics needs to be developed.

The paper has been organized as follows. In section 2 we analyse the macroscopic
implications of the rotational dynamics of the particles by establishing a relationship between
the viscosity associated with the rotation of the particle, or rotational viscosity, and its dynamics.
This formula is applied to several cases already addressed in the literature, which in this
framework can be treated in a very simple and systematic way. Section 3 is devoted to
presenting some well-known examples belonging to the single-particle domain. In section 4
we analyse the non-linear domain and discuss very briefly the appearance of a dynamical
transition breaking the monotonic nature of the rotational viscosity as a function of the field.
In section 5 we deal with the rheology of the moderately concentrated phase. Finally, in the
discussion section we summarize the main results obtained in the regimes addressed previously
and point out some methodological aspects useful in the treatment of these systems.

2. From mesoscopic to macroscopic

To illustrate the implications of the mesoscopic dynamics of the suspended particles for the
macroscopic behaviour of the system, we consider first the case in which the field-responsive
fluid consists of a dilute suspension of spherical dipolar particles in a simple liquid under the
influence of an external magnetic field which may be constant or time dependent. The dipole
moments remain rigidly attached to the particles, being parallel to their orientations. The
dynamics of both the magnetic moment and orientation of the particle are given by

dR̂

dt
= �� × R̂ (1)

where R̂ is the unit vector along the dipole moment and �� is the angular velocity of the particle.
A very common situation arises when inertial effects can be neglected. In this case, the angular
velocity of the particle is completely determined by the balance of magnetic, hydrodynamic,
and Brownian torques. It is given by

�� = �ω0 +
1

ξr
�m × �H +

1

ξr
R̂ × �FB(t). (2)

Here �m = m0R̂ is the dipole moment, and �H is the applied field. The hydrodynamic torque
arises from the angular velocity difference between the particle and the fluid with vorticity
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2ω0; its strength also depends on the rotational friction coefficient, ξr . Brownian effects are
taken into account through a random force, �FB(t), with zero mean and correlation function〈

�FB(t) �FB(t
′)
〉
= 2ξrkBT

��1δ(t − t ′)

where kB , T , and ��1 are the Boltzmann constant, the absolute temperature, and the unit tensor,
respectively.

Previously given equations describe the rotational dynamics of the particle inside the fluid,
but do not give information about the effects of this mesoscopic motion in the macroscopic flow.
In particular, the presence of colloidal particles in a liquid modifies the macroscopic properties
of the fluid by changing the transport coefficients. Several methods have been developed to
compute the dependence of the transport coefficients upon the presence of these particles. Here,
however, we follow an alternative approach which directly relates the mesoscopic dynamics
of the particle to its macroscopic effects. To this end we consider the power dissipated in the
fluid by the motion of the particle. Since the rotational motion is assisted by the external field,
its angular velocity does not necessarily have to be adapted to the local angular velocity of the
fluid, i.e. to the local vorticity. This gives rise to additional dissipation in the system resulting
from the torque exerted by the particle on the fluid. Therefore, the power dissipated per unit
of volume due to the presence of the particles is

σmes = nξr( �ω0 − 〈 ��〉) · �ω0 (3)

where n = N/V is the concentration of colloidal particles and 〈· · ·〉 stands for the average
over thermal noise. The rotational viscosity, ηr , accounts for the change in the total viscosity
of the system due to the rotational degrees of freedom of the particles. From a macroscopic
point of view, the power dissipated by this change in the viscosity [11] is given by

σmac = ηr(2ω0)
2. (4)

The relationship between mesoscopic and macroscopic properties follows straightforwardly
since the previous equations are merely two different expressions for the same quantity, i.e.,
σmac = σmes . In this way, we obtain

ηr = 1

4
nξr(1 − 〈�〉/ω0) (5)

which leads to the same result as in reference [8] when the rotational friction coefficient is
replaced by its explicit expression for a sphere, ξr = 8πη0a

3, with η0 and a being the viscosity
of the carrier fluid and the radius of the particle, respectively. Notice, however, that our
expression is not restricted to just spheres, like those of reference [6]; it can also be applied
to any other type of particle just by considering the appropriate expression for the rotational
friction coefficient. From this expression the rotational viscosity follows from the knowledge
of the dynamics of the particle in the host medium. It may take positive or negative values
depending on the ratio between the mean angular velocity of the particle and the local vorticity.

The methodology introduced previously, far from being specific, can be applied to a wide
variety of situations, including different types of particle and flow. Let us outline here its
applicability to a rod-like colloid in an elongational flow defined through the velocity field
�vs = ��κ · �r , with

��κ = β(3êx êx − ��1)
and β representing the velocity gradient and the elongation rate, respectively. The dynamics of
the particle follows in a similar way to in the previous situation, but now with the hydrodynamic
torque given by

�T H = −ξr [ �� − R̂ × (��κ · R̂)]. (6)
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The power dissipated can be expressed as both

σmes = n
〈��ξ : (��κ · R̂ − �� × R̂)(��κ · R̂)

〉
(7)

and

σmac = 2ηe��κ : ��κ = 12ηeβ
2 (8)

where
��ξ = ξ||R̂R̂ + ξ⊥(

��1 − R̂R̂)

is the friction tensor [12, 13]. Therefore, the elongational viscosity is given by

ηe = σmes

12β2
. (9)

Notice that, in contrast with the previous situation, the elongational viscosity depends on
correlations of �� and R̂. Vorticity effects can also be considered in this case. Their contrib-
ution to the rotational viscosity is obtained in a completely analogous way to previously.

3. Some representative examples in the single-particle domain

Our purpose in this section is to present some illustrative examples which have already
been discussed in the literature. Here, however, we follow the method proposed in the
previous section from which much of the essential information obtained from more complicated
procedures can be recovered.

The simplest case addressed is the one in which the suspended dipoles are rigid and relax
in a noiseless environment in the presence of a constant magnetic field. The dynamics of the
magnetic moment is given by equations (1) and (2) where now the random force, �FB(t), has to
be omitted. To better illustrate the essentials of the phenomenon, the explicit situation that we
consider consists in an applied magnetic field along the x-direction, �H = H0êx , and a vorticity
perpendicular to it along the y-direction, �ω0 = ω0êy .

The equilibrium orientation of the particle for the previous situation is given by

R̂s =
{ √

1 − (1/α)2x̂ − (1/α)ẑ if α � 1

±
√

1 − α2ŷ − αẑ if α < 1
(10)

where α = m0H/ξrω0 is the ratio between the magnetic and hydrodynamic torques. The
expression for the rotational viscosity readily follows after substituting the value for the
orientation of the particle in the expression for the angular velocity, resulting in

ηr =




1

4
nξr if α � 1

1

4
nξrα

2 if α < 1.
(11)

Notice that the rotational viscosity increases quadratically with the intensity of the applied
field until it reaches a saturation value at fields which are strong enough to prevent particle
motion.

Let us now look at just the opposite situation, in which Brownian effects dominate the
dynamics. Taking averages in equation (2), for the component of the angular velocity parallel
to the vorticity, we obtain〈

�y

〉 = ω0 +
1

ξr
m0H0 〈Rz〉 (12)
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whereas from equation (1),

d

dt
〈Rz〉 = ω0 〈Rx〉 − m0H0

ξr

〈
RzR

2
x

〉 − kBT

ξr
〈Rz〉 (13)

d

dt
〈Rx〉 = −ω0 〈Rz〉 +

m0H0

ξr

〈
1 − R2

x

〉 − kBT

ξr
〈Rx〉 . (14)

From the previous equations we can easily obtain the viscosity for some representative
cases in the stationary state (d〈 �R〉/dt = 0). For instance, in the high-field limit we have
Rx ∼ 1. Therefore,

〈Rz〉 = ξrω0

m0H0 + kBT
and ηr = nξr

4 + 4kBT /m0H0
. (15)

In contrast, for high noise or low field we have m0H0 � kBT , which leads to

〈Rx〉 = kBT

ξrω0
〈Rz〉 .

Moreover, since the distribution of orientations is almost uniform, i.e. 〈R2
x〉 ∼ 1/3,

〈Rz〉 = 2m0H0/ξrω0

3 + 3(kBT /ξrω0)2
(16)

and

ηr = 1

24
nξr

[
(m0H0)

2

(ξrω0)2 + (kBT )2

]
. (17)

As a common feature, in all these examples in which the magnetic field is constant, the
rotational viscosity is a monotonic function of the field, reaching a saturation limit at high
values of the field. This behaviour has been observed experimentally [17].

Let us now consider the situation in which the field is oscillating in time, �H = H0eiωt êx .
For the sake of simplicity we assume, as previously, that the amplitude of the field is sufficiently
small. In this case the mean angular velocity is given by〈

�y

〉 = ω0 +
1

ξr
m0�(H0eiωt )�(〈Rz〉ω) (18)

where 〈 �R〉 = 〈 �R〉ωeiωt and the overline stands for time average and � for the real part of its
argument. The solution of the previous equations follows straightforwardly by just realizing
that since d〈 �R〉/dt = iω〈 �R〉 the resulting equations are then formally identical to equations
(13) and (14) if one replaces kBT by kBT + iξrω. Taking the real part of the viscosity obtained
in that way leads to

ηr = n
m2

0H
2
0

24ξr

{
ω2

0 − ω2 + (kBT /ξr)
2[

(ω2
0 − ω2 + (kBT /ξr)2

]2
+ 2(kBT /ξr)2ω2

}
(19)

which corresponds to the increase of the viscosity due to the presence of the oscillating field.
It is worth pointing out the remarkable feature that this correction to the viscosity can take
negative as well as positive values. Negative values of this quantity mean that the mean angular
velocity of the particle is higher than that of the fluid. Therefore, the energy of the oscillating
field is transformed into kinetic energy that contributes to diminishing the effective viscosity
of the fluid. Notice that for this situation to happen, 〈 �Rz〉 and Hx must be anticorrelated, which
can never happen when d〈 �Rz〉/dt = 0.

Particles of different shape can also be included in this framework. For instance, in the
case of a suspension of rod-like particles, the elongational viscosity follows from the dissipated
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power (equation (7)). This quantity can be decomposed into its elastic, σE , and viscous, σV ,
contributions, i.e., σmes = σE + σV :

σE = nξ⊥
〈[
R̂ × (��κ · R̂) − ��

]
· R̂ × (��κ · R̂)

〉
(20)

σV = nξ||
〈
(R̂ · (��κ · R̂))2

〉
. (21)

Therefore, for an elongational flow and a magnetic field applied along the x-direction we obtain

σE = 3nβ
[
kBT

〈
(3R2

x − 1)
〉 − m0H0

〈
Rx(1 − R2

x)
〉]

(22)

σV = nβ2ξ||
〈
(3R2

x − 1)2
〉

(23)

where the averages involved can be computed from the probability distribution of Rx [12,13]:

P(Rx) ∝ exp

(
m0H0

KBT
Rx +

βξr

KBT
(3R2

x − 1)

)
. (24)

From previous equations then, we can easily obtain the elongational viscosity. This and other
types of viscosity have been computed in reference [13] following a different approach. They
have been found to depend also on the magnetic field and the aspect ratio of the particles.
Notice that here the dependence on the form of the particles enters through the explicit values
of ξ⊥ and ξ||.

4. Rheology in the non-linear regime

When the magnetic moment of the particle is not necessarily rigidly attached, it is oriented
along an intermediate direction between those of the magnetic field and the easy axis of
magnetization. The two relaxation mechanisms can be identified through the energy of the
particles, which for uniaxial crystals reads

U = − �m · �H − KaVp(n̂ · R̂)2 (25)

where Ka is an effective constant incorporating contributions from crystalline and shape
anisotropies, Vp is the volume of one of these spheres, and n̂ is the unit vector along the
direction of the easy axis of magnetization. The expression for the energy includes the case
of the rigid dipole, in which the vectors R̂ and n̂ are parallel, and the case of soft dipoles in
sufficiently high magnetic fields, in which the magnetic moment orients itself in the direction
of the field very quickly, then the particle rotates towards the stationary orientation where R̂

and n̂ are parallel. In this case the energy of the particle reduces to the energy of the anisotropy.
The dynamics of the magnetic moment is governed by the Landau–Gilbert equation. When

the ferromagnetic particle is rotating with angular velocity ��, it is expressed as

dR̂

dt
= −hR̂ × ∂U

∂R̂
× R̂ + ( �ωL + ��) × R̂. (26)

Here, �ωL = −g∂U/∂R̂ is the Larmor frequency and h and g are constants. Additionally, the
orientation of the easy axis of magnetization, n̂, evolves according to the rigid-rotor equation
(equation (1)) whereas the angular velocity follows from the balance of torques (equation (2)).

The dynamics of the particle has been solved analytically for the case of low vorticity and
magnetic field [14], belonging to the validity domain of linear response theory. In this sense
the rotational viscosity can be computed through a Green–Kubo formula [15] and, as in the
case of the rigid dipole, exhibits a monotonic behaviour when represented as a function of
the field. Additionally, from that formalism one can compute the time for relaxation of the
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magnetic moment towards the field for different substances [15] arriving at good agreement
with birefringence experiments [16].

The non-linear dynamics described by equations (25), (26), and the non-rigid dipole
counterpart of equations (1) and (2) reveals the existence of a rich phenomenology. As
discussed previously, in the linear regime deviations from the monotonic behaviour of the
rotational viscosity have only been found for time-dependent magnetic fields. In the case of
constant magnetic field the viscosity always increases with the field, reaching a saturation
limit [17,18]. In the non-linear domain the orientation of the particle may explore states which
otherwise would not be accessible, opening the possibility for the appearance of dynamical
transitions among different states. Upon increase of the vorticity the system passes from a state
in which the particle behaves essentially as a rigid dipole to another in which the orientation
of the particle relaxes towards the magnetic moment which in turns undergoes an oscillatory
motion around the imposed field. The macroscopic implications of this dynamics is important
and manifests itself in the rotational viscosity. Anomalous behaviour of this coefficient has
been found even at constant magnetic field [9]. In the first state the viscosity increases with
the field as usual, but in the second it decreases. During this dynamical transition the system
can exhibit hysteresis.

5. Rheology in the moderately concentrated phase

When the concentration of particles increases, dipolar interactions become important and
an aggregation process takes place. To avoid this process the magnetic particles are coated
with a surfactant which introduces a steric repulsion. In the regime of low concentrations
the interactions balance each other out and the suspension is stable. Beyond that regime,
particles aggregate; the system then loses its original nature, evolving towards more stable
configurations. This process is in the most general situation a dynamical process in which
the structures may change over time by growth or fragmentation of some parts and may in
general be controlled by noise, the presence of an external field (constant or time dependent),
and the action of an imposed velocity field. When the individual particles assemble into
chains, the length has been found to depend on time through a scaling law whose predicted
dynamic exponent agrees with experimental results. In the absence of field, dipolar particles
self-organize hierarchically and fractal structures are formed. Their shapes depend on the
competition of dipolar forces and thermal agitation and can be characterized by means of the
fractal dimension of the aggregates. The probabilities of growth, Pg , and splitting, Ps , of the
structure are related through [19]

Pg

Ps

∼ e1/Tr (27)

where Tr is a reduced temperature comparing thermal and dipolar energies. This expression
may intuitively account for the appearance of different structures. In the limit Tr → 0, since
Ps ∼ 0, chains are the most likely structure. In the opposite limit, Ps ∼ Pg , spherical
aggregates are formed. The fractal dimension of the aggregates ranges from 1.1, at low
temperatures, to 1.7 which corresponds to the limit of pure diffusion-limited aggregation,
occurring at high temperatures. Consequently, the condition of clusters being mutually opaque:
D1 + D2 > 2, where D1 and D2 are the fractal dimensions of two interacting clusters, holds
and they may behave in solution as spheres with an effective radius. The appearance of
fractal structures predicted in two dimensions [19] has been corroborated by experiments on
aggregation of magnetic particles in Langmuir monolayers [20].
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The analysis of the rheological properties at higher concentrations constitutes an open
problem which needs the implementation of new theoretical approaches. In the regime in
which particles self-organize forming chains, kinetic models have been proposed in which
the length of the chains may vary over time due to growth and fragmentation processes. The
dynamics of the orientation of the chain is in essence that of a non-linear oscillator. As an
example, for a chain of induced dipoles rotating under the influence of both field and shear
flow, the angle of the chain with the direction of the field evolves according to [21]

θ̇ + ω0 sin(2θ) = γ̇ cos2 θ (28)

where ω0 is a characteristic frequency and γ̇ the shear rate. The dynamics of other elongated
structures can be formulated in a similar way [22]. These models have predicted the behaviour
of the viscosity as a function of the shear rate in particular situations when the field is constant.
The rheology is very sensitive to the form of the underlying structure which tacitly implies
that its characterization must be very precise. The case of a time-dependent field is more
complex, and new non-linear rheological behaviours have been observed [23]. Modelling at
higher concentration, for which chains interact and branched structures are formed, constitutes
a challenge for future developments.

The methods proposed based upon Fokker–Planck dynamics, dealing essentially with
single particles, could in principle be generalized by considering the presence of dipolar
interactions among particles as a new ingredient. There are only a few results in this context.
Extension of the Fokker–Planck dynamics, developed for the case of single particles, to the
case of dipolar interactions has been carried out to analyse the dynamics of a moderately
concentrated suspension of ferromagnetic particles [24]. Fokker–Planck dynamics has also
been treated perturbatively to calculate the viscosity of a suspension of chains of ferromagnetic
particles in an elongational flow [25]. As we have seen previously, rheological properties
depend on the dynamics of the emergent structures and therefore the knowledge of those
properties is highly limited when the dynamics of the different entities integrating into the
solid phase is unknown.

6. Discussion

Throughout this paper, we have discussed rheological properties of field-responsive fluids.
The main characteristics of these systems, as regards the dynamics, are that it is assisted by
the external field and it is influenced by dipolar interactions, which are the dominant ones.
The single-particle regime is much more complex than in the case of neutral colloids and
therefore its study has intrinsic interest. The dynamics of a single particle is in general non-
linear and its description requires the knowledge of the evolution of two vectors: the magnetic
moment and the orientation of the particle, whose dynamics are coupled. The linear domain
is well known and can be analysed using continuum theories or linear response theory; the
classical results for the viscosity as a function of the field have been obtained in this situation.
The non-linear dynamics has not been explored in depth and deserves more attention. The
analysis of some particular situations belonging to that domain makes evident the presence of
new phenomenology, sometimes counterintuitive. The many-particle domain has as a main
feature the formation of structures—mainly chains or branched structures—which may in
general evolve over time. Information about rheological properties at moderate concentrations
when chains are the emergent structures can be obtained from kinetic models. In the more
concentrated regime in which the very notion of a chain breaks down, new approaches have to
be implemented.

The methodology used to analyse the dynamics of these systems is quite similar to that
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used in the study of other soft-condensed-matter systems. At the phenomenological level,
continuum theories may provide information on the dilute regime. Scaling laws can be
proposed for example to analyse the length of chains or the form of fractal aggregates. Fokker–
Planck dynamics always provides a useful framework for analysing dynamical properties, for
example the viscosity. This method has limitations when the system is complex, which is
the case that we are concerned with. Even in the linear regime one obtains hierarchies of
equations for the moments, which may provide information after decouplings. When dipolar
interactions are considered, the Fokker–Planck dynamics can only be solved perturbatively
for particular situations. Contrasting with the case for this methodology, in the formalism
that we have proposed the viscosity is given in terms of the angular velocity of the particle,
which in turn may easily be computed via simulations. This procedure may provide a useful
framework within which rheological properties of these systems could be analysed. Numerical
simulations on mesoscopic and macroscopic scales [26,27] constitute an increasingly valuable
adjunct to theoretical and experimental studies.

In this paper we have dealt mainly with ferrofluids, a class of field-responsive systems
in which the particles are single-domain magnetic particles with permanent dipole moments.
The methods that we have proposed and the problems that we have outlined also hold or have
a counterpart in the case in which the particle bears induced dipoles, as occurs in electro-
and magneto-rheological fluids or even in suspensions of latex particles in a ferrofluid—the
so-called magnetic holes whose non-linear dynamics has been analysed for assemblies of
dimers [28].
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